.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "matplotlib/plot_suris_integrablemap.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_matplotlib_plot_suris_integrablemap.py: Suris's integrable map =================================== .. math:: p_{n+1} & = p_{n} + \frac{\epsilon}{2\pi}\frac{ \sin2\pi q}{1+\epsilon \cos2\pi q} \\ q_{n+1} &= q_{n} + p_{n+1} | [1] Y. B. Suris, Integrable Mappings of the Standard Type, Funct Anal Its Appl 23, 74 (1989). | [2]J. D. Meiss, Symplectic Maps, Variational Principles, and Transport, Reviews of Modern Physics 64, 795 (1992). | [3] H. E. Lomelı́ and J. D. Meiss, Heteroclinic Orbits and Flux in a Perturbed Integrable Suris Map, Physics Letters A 269, 309 (2000). .. GENERATED FROM PYTHON SOURCE LINES 18-111 .. image:: /matplotlib/images/sphx_glr_plot_suris_integrablemap_001.png :alt: $k=0.5$ :class: sphx-glr-single-img .. code-block:: default import numpy as np import matplotlib.pyplot as plt twopi = 2*np.pi omega=twopi def Map(q,p,eps): pp = p + V(q,eps) qq = q + pp return qq, pp def V(q,eps): return -np.arctan( eps*np.sin(twopi*q) / (1+eps*np.cos(twopi*q) ) )*2/twopi def Phi0(x,y): return (1-np.cos(omega*(x-y)))#/omega**2 def Phi1(x,y): return (np.cos(omega*x) + np.cos(omega*y))#/(2*omega) def Phi(x,y,eps): return np.cos(omega*y) + eps*(np.cos(omega*x) + np.cos(omega*(x-y))) def GetTraj(inits, k,sample=100,tmax=500): res = [[],[]] for q,p in zip(inits[0],inits[1]): traj = [np.array([])]*2 for i in range(tmax): traj[0] = np.append(traj[0], q) traj[1] = np.append(traj[1], p) q,p = Map(q,p,eps) q = q - np.floor(q) # p = p - np.floor(p) res[0].append(traj[0]) res[1].append(traj[1]) return res import sys eps = 0.5 #tau = 1 sample=20 tmax = 200 x = np.linspace(0,1,1000,endpoint=False) y = np.linspace(-1,1,1000) X,Y = np.meshgrid(x,y) fig1 = plt.figure(figsize=(6,6)) ax1 = fig1.add_subplot(1,1,1) init = [np.array([1/2]),np.array([0])] traj = GetTraj(init, eps,sample=sample,tmax=tmax) energy = Phi(init[0][0], init[1][0],eps) ax1.contour(X,Y,Phi(X,Y,eps),[energy],colors=["k"],linewidths=1.5) q0 = 0.5+np.arccos(eps/2)/twopi q1 = 1 p0 = np.arccos(eps**2/2 - 1)/twopi p1 = 0 q = np.linspace(q0, q1, sample) p = np.linspace(p0, p1, sample) init = [q,p] traj = GetTraj(init, eps,sample=sample,tmax=tmax) energys = [] colors = [] for i in range(sample): card = i/sample lx, = ax1.plot(traj[0][i],traj[1][i],'o',markersize=4,mec="none", color=plt.cm.Oranges_r(card) ) energy = Phi(init[0][i], init[1][i],eps) energys.append(energy) colors.append(lx.get_color()) clbar = ax1.contour(X,Y,Phi(X,Y,eps),energys, colors=colors) ax1.set_ylim(-0.7,0.7) ax1.set_xlim(0,1) ax1.set_title(r"$k=%.1f$" % (eps),fontsize=16,position=(0.18,1)) ax1.set_xlabel(r"$q$",fontsize=25) ax1.set_ylabel(r"$p$",fontsize=25) fig1.tight_layout() #fig1.savefig("SurisMap_k%.3f.png" % (k),transparent=True) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.358 seconds) .. _sphx_glr_download_matplotlib_plot_suris_integrablemap.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_suris_integrablemap.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_suris_integrablemap.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_