.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "matplotlib/plot_rect_billiard.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_matplotlib_plot_rect_billiard.py: rectangular billard ======================= .. GENERATED FROM PYTHON SOURCE LINES 5-88 .. image-sg:: /matplotlib/images/sphx_glr_plot_rect_billiard_001.png :alt: plot rect billiard :srcset: /matplotlib/images/sphx_glr_plot_rect_billiard_001.png :class: sphx-glr-single-img .. code-block:: default import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots(1,1, figsize=(6,6)) x = np.array([-3/2, 3/2, 3/2, -3/2, -3/2]) y = np.array([1, 1, -1, -1, 1]) ax.plot(x, y, '-k', lw=3) ax.set_ylim(-2,2) ax.set_xlim(-2,2) def intersection(vec0, coord): a = vec0[1]/vec0[0] x0 = coord[0] y0 = coord[1] sg = np.sign(vec0[1]) x1 = - ( - sg - a*x0 + y0 ) / a y1 = sg if np.abs(x1) > 3/2: sg = np.sign(vec0[0]) x1 = sg*3/2 y1 = (sg*3*a - 2*a*x0 + 2*y0)/2 return np.array([x1, y1]) def df(x0): x = x0[0] y = x0[1] if np.abs(np.abs(y) - 1) < 1e-10: z = np.array([0, -1]) elif np.abs(np.abs(x) - 3/2) < 1e-10: z = np.array([-1, 0]) return z traj = [np.array([]), np.array([])] x0 = np.array([0.1, 0.1]) vec0 = np.array([-np.pi/10, 0.1]) init_x = x0.copy() init_vec = vec0.copy() traj[0] = np.append(traj[0], x0[0]) traj[1] = np.append(traj[1], x0[1]) x1 = intersection(vec0, x0) traj[0] = np.append(traj[0], x1[0]) traj[1] = np.append(traj[1], x1[1]) n = df(x1) pn = - np.dot(vec0, n)/np.dot(n, n) * n vec1 = vec0 + 2*pn #ax.quiver(x1[0], x1[1], n[0], n[1], angles='xy', scale_units='xy', scale=1) #ax.quiver(x1[0], x1[1], vec1[0], vec1[1], angles='xy', scale_units='xy', scale=1) for i in range(10): x0 = x1.copy() vec0 = vec1.copy() x1 = intersection(vec0, x0) traj[0] = np.append(traj[0], x1[0]) traj[1] = np.append(traj[1], x1[1]) n = df(x1) pn = - np.dot(vec0, n)/np.dot(n, n) * n vec1 = vec0 + 2*pn #ax.quiver(x1[0], x1[1], vec1[0], vec1[1], angles='xy', scale_units='xy', scale=1) ax.plot(traj[0], traj[1], '-') ax.plot(init_x[0], init_x[1], 'ok') ax.quiver(init_x[0], init_x[1], init_vec[0], init_vec[1], angles='xy', scale_units='xy', scale=1) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.078 seconds) .. _sphx_glr_download_matplotlib_plot_rect_billiard.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_rect_billiard.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_rect_billiard.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_