.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "matplotlib/plot_complex_pendulumn.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_matplotlib_plot_complex_pendulumn.py: Complex contour of a pendulum ============================= complex surface of a Hamiltoanian .. math:: H(q, p) = \frac{p^2}{2} + k \cos q with :math:`Re[E]=const.` .. GENERATED FROM PYTHON SOURCE LINES 16-73 .. image:: /matplotlib/images/sphx_glr_plot_complex_pendulumn_001.png :alt: plot complex pendulumn :class: sphx-glr-single-img .. code-block:: default import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D np.seterr(invalid='ignore') twopi = 2*np.pi x = np.linspace(-twopi,twopi,100) y = np.linspace(-2,2,100) x,y = np.meshgrid(x,y) eps = 0.5 Ham = lambda q,p: p**2/2 + eps*np.cos(q) #fig, ax = plt.subplots(1,1,projection="3d") fig = plt.figure() fig.patch.set_visible(0) ax = fig.add_subplot(1,1,1,projection="3d") ax.patch.set_alpha(0) ax.contour(x,y,Ham(x,y),10,zdir='z',offset=0,colors="k") E=0 def P(q,E): return np.sqrt(2*(E-eps*np.cos(q))) twopi = 2*np.pi q = np.linspace(-twopi,twopi,2000) + 0.j p = P(q,E) ax.plot(q.real, p.real, p.imag, "-r",lw=3) ax.plot(q.real, -p.real, p.imag, "-r",lw=3) sample=100 E=0 + np.linspace(0,1,sample)*1.j q = np.linspace(-twopi,twopi,sample) + 0.j q,E=np.meshgrid(q,E) p = P(q,E) ax.plot_wireframe(q.real,p.real,p.imag,alpha=0.2) ax.plot_wireframe(q.real,-p.real,p.imag,alpha=0.2) ax.set_zlim(0,1.5) ax.set_xlim(-twopi,twopi) ax.set_ylim(-2,2) ax.set_xlabel("$\mathrm{Re}(q)$",fontsize=18) ax.set_ylabel("$\mathrm{Re}(p)$",fontsize=18) ax.set_zlabel("$\mathrm{Im}(p)$",fontsize=18) ax.set_xticks([-twopi, -np.pi, 0,np.pi, twopi]) E=0 q0=np.arccos(2*E/eps) #ax.text(q0,0,0,r"$a$", fontsize=15,bbox=dict(facecolor='w', edgecolor='none', pad=0,alpha=1)) #ax.text(-q0,0,0,r"$-a$",fontsize=15,bbox=dict(facecolor='w', edgecolor='none', pad=0,alpha=0.8)) ax.set_yticks([-2,0,2]) ax.set_zticks([0,1]) ax.set_xticklabels([r"$-2\pi$", r"$-\pi$", r"$0$", r"$\pi$", r"$2\pi$"]) #plt.tight_layout() #plt.savefig("complex_pen.svg") plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.166 seconds) .. _sphx_glr_download_matplotlib_plot_complex_pendulumn.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_complex_pendulumn.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_complex_pendulumn.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_