.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "matplotlib/plot_complex_KAM.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_matplotlib_plot_complex_KAM.py: Complexified KAM curve (standard map) ======================================= :math:`k=0.9, \nu=0.618034` [1]J. M. Greene and I. C. Percival, Hamiltonian Maps in the Complex Plane, Physica D: Nonlinear Phenomena 3, 530 (1981). .. GENERATED FROM PYTHON SOURCE LINES 10-90 .. code-block:: default import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import sys import glob k = -0.9 twopi=2.0*np.pi def Q(coeff, theta): res = np.copy(theta) + 0.j for i, m in enumerate(coeff[0]): res += -1.j*coeff[1][i]*np.exp(1.j*theta*m) + 1.j*coeff[1][i]*np.exp(-1.j*theta*m) return res def P(coeff, theta): return Q(coeff, theta) - Q(coeff, theta + twopi*nu) - np.sin(Q(coeff, theta))*k/2 dirname = "nu_0.618034" nu = float(dirname.split("_")[1]) path = dirname + "/fourier_coeff_j21.dat" coeff = np.loadtxt(path).transpose() fig = plt.figure() ax = fig.add_subplot(1,1,1,projection='3d') ax.axis('off') traj = np.loadtxt(dirname + "/traj.DAT").T ymin,ymax = 3.5, 4.5 index = (traj[1]>ymin) & (traj[1]` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_complex_KAM.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_