.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "matplotlib/plot_circular_billard.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_matplotlib_plot_circular_billard.py: (classical) circular billard =============================== .. GENERATED FROM PYTHON SOURCE LINES 5-83 .. image-sg:: /matplotlib/images/sphx_glr_plot_circular_billard_001.png :alt: plot circular billard :srcset: /matplotlib/images/sphx_glr_plot_circular_billard_001.png :class: sphx-glr-single-img .. code-block:: default import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots(1,1, figsize=(6,6)) theta = np.linspace(-np.pi, np.pi, 100) z = np.exp(1j*theta) ax.plot(z.real, z.imag, '-') ax.set_xlim(-1,1) ax.set_ylim(-1,1) def df(x): return np.array([2*x[0], 2*x[1]]) def intersection(vec0, coord): a = vec0[1]/vec0[0] if np.abs(a) > 1e7: z = np.array([x1, -y0]) x0 = coord[0] y0 = coord[1] sg = np.sign(vec0[0]) D = 1 - a**2*(-1+x0**2)+ 2*a*x0*y0 -y0**2 x1 = - ( -a**2*x0 + a*y0 - sg * np.sqrt(D) ) / (1 + a**2) y1 = (y0 -a * ( x0 - sg* np.sqrt(D) ) )/ (1 + a**2) z = np.array([x1, y1]) return z #x0 = np.array([0, 1/np.sqrt(2)]) x0 = np.array([0.5, 0.1]) vec0 = np.array([-0.2, 0.2]) ini_x0 = x0.copy() ini_vec0 = vec0.copy() x1 = intersection(vec0, x0) traj = [np.array([]), np.array([])] traj[0] = np.append(traj[0], x0[0]) traj[1] = np.append(traj[1], x0[1]) traj[0] = np.append(traj[0], x1[0]) traj[1] = np.append(traj[1], x1[1]) n = -df(x1) pn = -np.dot(vec0, n)/np.dot(n, n) * n vec1 = vec0 + 2*pn #ax.quiver(x1[0], x1[1], n[0], n[1], angles='xy', scale_units='xy', scale=10) #ax.quiver(x1[0], x1[1], vec1[0], vec1[1], angles='xy', scale_units='xy', scale=1) for n in range(30): x0 = x1.copy() vec0 = vec1.copy() x1 = intersection(vec0, x0) traj[0] = np.append(traj[0], x1[0]) traj[1] = np.append(traj[1], x1[1]) n = -df(x1) pn = -np.dot(vec0, n)/np.dot(n, n) * n vec1 = vec0 + 2*pn xx = np.linspace(x0[0], x1[0], 2) yy = vec0[1]/vec0[0]*(xx - x0[0]) + x0[1] ax.plot(traj[0], traj[1],'-', alpha=0.7) ax.plot(ini_x0[0], ini_x0[1], 'ok') ax.quiver(ini_x0[0], ini_x0[1], ini_vec0[0], ini_vec0[1], angles='xy', scale_units='xy', scale=0.5) ax.grid() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.098 seconds) .. _sphx_glr_download_matplotlib_plot_circular_billard.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_circular_billard.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_circular_billard.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_